HW06 - Nuclear

Started: Mar 22 at 11:05am

Quiz Instructions

Homework 06

Nuclear

Question 1	1.5 pts
How does a nuclear reaction differ from a chemical reaction?	
In a nuclear reaction, the elements change identities while in a chemical reaction they do not	
Entropy is increased in a chemical reaction while it is decreased in a nuclear reaction.	
There is no actual difference between the two reactions except that a nuclear reaction emits chemical reaction emits heat.	radiation while a
Entropy is increased in a nuclear reaction while it is decreased in a chemical reaction.	
In a chemical reaction, elements are created and destroyed while all elements are conserved reaction.	l in a nuclear
Question 2	1.5 pts
The key requirement for a chain reaction is that	
each event must produce more than one particle capable of initiating subsequent events.	
the entropy of the system must decrease.	
the uranium hexafluoride fuel must be in its solid state.	
the number of beta particles emitted must be equal to or greater than the number of gamma	particles emitted.

Question 3	1.5 pts
Which component of a nuclear power plant is responsible for controlling the fission reaction by absorbing neutrons?	
ocontrol rods	
Coolant	
O reactor	
steam generator	
Question 4	1.5 pts
An explosion at a Chernobyl power plant caused radioactive material to spread across the air and increased cancer risks for nearby people. What is the best explanation for the cause of that explo	
O Hydrogen gas igniting.	
Chain reaction of the nuclear fuel.	
Sparks caused when the nuclear reaction heated up, melted the reactor core, and melted the electrical wiring nearby.	e plastic on the
Pressure build-up of steam inside the plant.	
Question 5	1.5 pts
Which of the following characteristics apply to fusion but NOT fission?	
High temperature is required to initiate the process.	
A process that is used to generate electrical power.	
A process that is used to generate electrical power. Involves transmutation of elements.	

	Radiation is emitted during the process.
C	Neutrons are required to continue the chain reaction.

 Question 6
 1.5 pts

 How many protons, neutrons, and electrons respectively are in a neutral atom of iron-55?

 26, 29, 26

 55, 26, 55

 29, 26, 29

 26, 29, 29

Question 7	1.5 pts
In a nuclear power plant, heat created by electricity. An example of this type of reaction is _	_ is used to generate steam which drives a turbine that produces
nuclear fission,	
235 U + 1 n \longrightarrow 142 Ba + 91 Kr + 3^{1} n	
nuclear fusion,	
$^{2}\text{H} + {}^{3}\text{H} \longrightarrow {}^{4}\text{He} + {}^{1}\text{n}$	
nuclear fusion,	
235 U + 1 n \longrightarrow 142 Ba + 91 Kr + 3^{1} n	
nuclear fission,	
$^{2}\text{H} + {}^{3}\text{H} \longrightarrow {}^{4}\text{He} + {}^{1}\text{n}$	

Question 8 1.5 pts

$? \longrightarrow {}^{14}_{7}N + {}^{0}_{-1}\beta$	
$\bigcirc {}^{14}_6C$	
$\bigcirc {}^{14}_8C$	
$\bigcirc {14 \atop 8}O$	
$\bigcirc {}^{14}_{6}O$	
Question 9	1.5 pts
When 131 I emits a eta particle, what nuclide is produced?	
○ ¹³¹ Xe	
○ ¹³⁰ Te	
○ ¹³¹ Te	
○ ¹²⁷ Sb	
<u>130</u>	
Question 10	1.5 pts
A nuclide undergoes $lpha$ decay and forms 110 I. What is the nuclide?	
○ ¹¹⁴ Cs	
O 114	
○ ¹¹⁰ Te	
O ¹¹² Cs	
○ ¹¹⁰ Xe	

Identify the missing isotope in the nuclear reaction below:

Question 11	1.5 pts
O-15 decays by positron emission. What is the product of this decay?	
$\bigcirc {}^{15}_{7}N$	
$\bigcirc {}^{11}_6C$	
$\bigcirc {}^{14}_{8}O$	
$\bigcirc {}^{15}_9F$	
None of the other answer choices are correct.	
Question 12	1.5 pts
Which of the following types of radiation has the greatest penetrating ability?	
$\circ \gamma$	
$\bigcirc \alpha$	
Οβ	
All of these types of radiation have the same penetrating ability.	
Question 13	1.5 pts
Gamma radiation is typically considered the most dangerous form of radiation because	
it can penetrate most substances, and, therefore, is very difficult to shield against.	
it typically generates further nuclear decay.	
0	

it is the only form of radiation that can affect organic molecules.
it is the only form of ionizing radiation.
This is a trick question. Gamma radiation is not actually considered to be very dangerous when compared to other forms of radiation.
Question 14 1.5 pts
What is the neutron : proton ratio for the nucleus $\frac{16}{8}$ O ? Determine where this nucleus lies in relation to the band of stability.
1:1, within
1:1, outside
1:2, within
1:2, outside
2:1, within
2:1, outside
Question 15 1.5 pts
Why does the band of stability curve upward at high atomic numbers?
Excess neutrons are required due to the repulsion between the protons.
If we have too many protons, not enough electrons will be orbiting the atom to keep it electrically neutral overall.
Excess protons are required to help keep the neutrons from sticking together as neutrons have no charge.
Atoms with high atomic numbers have a large number of electrons orbiting the nucleus. This increased number of electrons requires a lot of extra mass in the nucleus to keep the electrons in their orbit.

Question 16 1.5 pts

$\frac{\partial}{\partial t}He$	
O beta decay	
alpha decay	
opositron emission or electron capture	
This isotope is already stable and will not undergo any type of n	uclear decay.
Question 17	1.5 <u>r</u>
The half-life of radon-222 is 3.824 days. After what time will one-four	th of a given amount of radon-222 remain?
7.648 days	
○ 5.736 days	
◯ 4.736 days	
O 9.560 days	
Question 18	1.5 բ
Calculate the time required for the activity of a 9.0 mCi cobalt-60 sous 5.26 years.	rce to decay to 8.5 mCi. The half-life of cobalt-60
◯ 5.2 months	
2.3 months	
4.6 months	

Question 19 1.5 pts

treat cancer. Bra	chytherapy allo	sed in brachytherapy in which a radioactive source is placed inside a patient's body to vs the use of a higher than normal dose to be placed near the tumor while lowering the Iridium-192 is often used in the head or breast.
If a sample of iri	dium-192 is init	ally 3.25g and 1.21g remains after 105 days, estimate the half-life of the radioisotope.
74 days		
78 days		
70 days		
O 67 days		
Question 20		1.5 pts
For the following	ı fusion roasticı	calculate the change in energy of the reaction in units of joules per mole.
${}^{2}H + {}^{2}H -$		
Atom or Partic	e Mass (amu)	
H-1	1.00782	
H-2	2.01410	
H-3	3.01605	
He-3	3.01603	
He-4	4.00260	
n	1.00866	
3.15 x 10 ¹	¹ J/mol	
3.51 x 10 ⁻⁶	J/mol	

3.15 x 10⁸ J/mol